Convective exchange between the nose and the atmosphere.
نویسندگان
چکیده
It is generally accepted that there is little rebreathing of gas exhaled through the nose. A detailed physical model system has been used to quantify and identify the mechanisms responsible for this phenomenon. By the use of a cast of the upper respiratory tract and oscillating flows with a Reynolds number of 500 and nondimensional frequency of 1.6, corresponding to quiet tidal breathing through the nose, dye dilution measurements indicated an efficiency of tidal exchange of 0.95. Flow visualization studies performed to trace the expiratory flow, as well as the streamlines during steady inspiratory flow, support the hypothesis that the high efficiency of exchange is due to radical differences in the velocity fields between inspiratory and expiratory phases of this oscillatory flow. These findings confirm that convective gas exchange between the nose and the atmosphere is highly efficient; however, the underlying mechanism responsible for this exchange also maximizes the exposure of the respiratory system to aerosols contained in the ambient atmosphere.
منابع مشابه
Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system
Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...
متن کاملUNSTEADY CONVECTIVE DIFFUSION IN A HERSCHEL–BULKLEY FLUID IN A CONDUIT WITH INTERPHASE MASS TRANSFER
The combined effect of non-Newtonian rheology and irreversible boundary reaction on dispersion in a Herschel-Bulkley fluid through a conduit (pipe/channel) is studied by using generalized dispersion model. The study explains the development of dispersive transport following the injection of a tracer in terms of three effective transport coefficients namely exchange, convective and dispersion co...
متن کاملEntropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling
The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...
متن کاملInherent Irreversibility of Exothermic Chemical Reactive Third-Grade Poiseuille Flow of a Variable Viscosity with Convective Cooling
In this study, the analysis of inherent irreversibility of chemical reactive third-grade poiseuille flow of a variable viscosity with convective cooling is investigated. The dissipative heat in a reactive exothermic chemical moves over liquid in an irreversible way and the entropy is produced unceasingly in the system within the fixed walls. The heat convective exchange with the surrounding tem...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 64 6 شماره
صفحات -
تاریخ انتشار 1988